Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 60(1): 190-199, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36618047

RESUMO

This study investigated the effect of germination time (0, 24, 48 and 72 h) on the physicochemical characteristics, in vitro starch digestibility and microstructural changes in Bambara groundnut starch. The starch yield, lightness (L*) value, amylose content and resistant starch contents of isolated starches decreased significantly (p ≤ 0.05) with increasing germination time. Scanning electron microscopy revealed that starch from raw and germinated Bambara grains were smooth with no evidence of starch degradation and were mainly oval shaped, with some granule's irregular and kidney shaped. Water absorption capacity (1.33-1.90 g/g), swelling power (2.12-16.53 g/g), solubility index (1.14-13.04 g/g), and dispersibility (75.92-86.47%) greatly increased as germination timed increased. Germination did not alter the X-ray diffraction pattern (Type-A) but increased the relative crystallinity of the starches. The peak gelatinization temperatures (73.23-73.91 °C) of starch from germinated Bambara were significantly higher than native starch (72.81 °C). Native starch and starch from germinated Bambara grains had substantially high proportion of resistant starch (approx. 73%) and high pasting temperatures (approx. 88 °C). Conclusively, germination significantly changed starch structure at molecular level and impacted functionality.

2.
J Food Sci Technol ; 50(6): 1179-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24426032

RESUMO

The chemical, functional and pasting properties of cassava starch and soy protein concentrate blends intended for biofilm processing were studied. Cassava starch and soy protein concentrates were prepared and mixed at different proportions (100: 0%; 90 : 10%; 80 : 20%; 70 : 30%; 60;40% and 50: 50%). Addition of varying levels of soy protein concentrates to cassava starch led to increases in moisture (from 7.10 to 9.17%), protein ( from 0.32 to 79.03%), ash (from 0.45 to 2.67%) and fat (from 0.17 to 0.98%) contents while crude fiber, carbohydrate and amylose contents decreased from ( 1.19 to 0.38%, 90.77 to 57.01% and 29.45 to 23.04%) respectively . Water absorption capacity and swelling power of cassava starch were improved as a result of soy protein concentrate addition while syneresis and solubility value of composite blends were lower than 100% cassava starch. In general, cassava-soy protein concentrate blends formed firmer gels than cassava starch alone. There were significant (p ≤ 0.05) increases in peak viscosity (from 160.12 to 268.32RVU), final viscosity (from 140.41 to 211.08RVU) and pasting temperature (from 71.00 to 72.32 °C ) of cassava starch due to addition of soy protein concentrate. These results suggest that the addition of soy protein concentrate to cassava starch affected the studied functional properties of cassava starch as evidenced by changes such as reduced syneresis, and solubility that are desirable when considering this biopolymer as an edible biofilm.

3.
J Food Sci Technol ; 49(3): 349-55, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23729855

RESUMO

Quality attributes of stiff porridges prepared from Irish potato and pigeon pea starch blends were studied. Starches were extracted from Irish potato and pigeon pea using a wet extraction method. Various ratios of the starches were mixed and analyzed for chemical, functional and pasting properties. The starch blends were then prepared into stiff porridges for sensory evaluation using a 20-man sensory panel. Substitution of Irish potato starch with pigeon pea starch led to increases in protein (0.15 to 1.2%), fat (0.26 to 0.56%) and ash (0.30 to 0.69%) while the amylose content of the starch blends decreased (from 23.8 to 18.4%) respectively. Functional properties such as bulk density (0.75 to 0.60 g/cm(3)), water absorption capacity (3.1 to 2.6 g water/ g sample) and dispersibility (58.6 to 42.7%) decreased significantly (P < 0.05) at the highest concentration (50%) of pigeon pea starch respectively. Pasting properties such as peak, breakdown, final and setback viscosities increased with increasing levels of pigeon pea starch while peak time and pasting temperature decreased. The sensory attributes of stiff porridges were not adversely affected by pigeon pea starch inclusion. Therefore it should be possible to incorporate up to 50% of low digestible pigeon pea starch into Irish potato starch from legumes such as pigeon pea as alternatives to cassava starch in the preparation of stiff porridges. Such porridges made from Irish potato and legume starches could provide additional incentive for individuals requiring decreased and or slow starch digestibility such as diabetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...